

 React Dash is a library for quickly building custom data visualization dashboards based on re-usable components.

[image: https://github.com/NuCivic/react-dashboard/raw/master/static/example.gif]

Features

	Chart Components Using NVD3

	Choropleth Maps in geoJson and topoJson

	HTML Components

	Custom Filtering

	Custom Data Handling

	CSV Integration

	DKAN API Integration

Table of Contents

	Getting Started

	Features

	Developer Guide

	Implementation Examples

	Ecosystem

	Contribute to React Dash

Getting Started

Starting a project with the boilerplate module

The react-dash-boilerplate project provides a starter project and a development environment for doing react-dash development. It’s a good place to start.

	Make sure that you have npm installed on your system

	Install the react-dash-boilerplate project and its dependencies:

git clone https://github.com/NuCivic/react-dash-boilerplate.git
cd react-dash-boilerplate
npm install
npm run init
npm run start

	Visit http://localhost:5000 on your system - if everything was successful, you should see an example dashboard

	Look at our Developer’s Guide for next steps to customize your dash!

Run the example project that ships with the react-dash project

If you can’t get the boilerplate project to install, just install the react-dash library and use the example project as a starting place.

	Make sure that you have npm installed on your system

	Set up an npm project

npm init
npm install react-dash
npm run start

	Look in the examples/ folder for the project source

	Take a look at our Developer’s Guide [https://github.com/NuCivic/dkan/tree/rtd/docs/development/index.html] for next steps to customize your dash!

Building a DKAN project

Visit the Drupal Module [https://github.com/NuCivic/react_dashboard] page for more on Drupal Dkan development

Features

	NVD3 Chart Components

	Filters

	Map Components

	Data Table

	Metric Component

	Text component

NVD3 Chart Components

[image: ../_images/nvd3_charts.png]
NVD3 is a powerful Javascript library for doing advanced data visualizations. To see examples of what is possible with nvd3, visit http://nvd3.org/examples/index.html

Filters

Filters allow end-users to filter and compare data. Commone use cases include:

	Filter data by year

	Filter data by department

	Compare entitities

Select Filter

Autocomplete Filter

Checkbox Filter

Map Components

Data Table

Metric Component

Text component

Developer Guide

	Overview

	Application Entry Point - app.js

	Configuring the dashboard - settings.js

	Data Handling

	Data Backends

	Dashboard Filtering

	Components

	Theming

	Project Workflows

	Roadmap

Overview

Currently, there are two formats avialable for defining dashboards:

JSX

You can define a dashboard using familiar JSX syntax. Following is a complete example of a simple dashboard defined in JSX:

npm run jsx-example will load the following dashboard:

/**
 * This example shows how to build a basic dashboard using available components
 * and basic React JSX syntax.
 *
 **/

/**
 * Import the required elements
 **/
import 'bootstrap/dist/css/bootstrap.min.css';
import React, { Component } from 'react';
import ReactDOM from 'react-dom';
import { Dashboard, Region, Card, Metric, Chart } from '../../src/ReactDashboard';

/**
 * Extend the application and provide a render method
 **/
class App extends Component {
 render() {
 return (

 /**
 * Use the Dashboard component to wrap your
 * dashboard elements
 **/
 <Dashboard title="A Simple Dashboard Writ in JSX" doFilterRouting={false}>
 <link rel="stylesheet" type="text/css" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" />

 <div className="row">
 <Metric
 caption='Caption A'
 data={[1]}
 background='#687a99'
 cardClasses={['col-md-4']}
 iconClass='fa fa-bed'
 />
 <Metric
 caption='Caption B'
 data={[2]}
 background='#689994'
 cardClasses={['col-md-4']}
 iconClass='fa fa-bomb'
 />
 <Metric
 caption='Caption C'
 data={[3]}
 background='#8f6899'
 cardClasses={['col-md-4']}
 iconClass='fa fa-bathtub'
 />
 </div>
 <div className="row">
 <Chart
 header="Header 1"
 iconClass="fa fa-cloud"
 cardClasses={['col-md-6']}
 key="chart1"
 data={[{x: 'foo', y: 10}, {x: 'bar', y: 20}, {x: 'bax', y: 30}]}
 settings={
 {
 type: 'pieChart',
 height: 300
 }
 }
 />
 <Chart
 header="Header 2"
 iconClass="fa fa-cogs"
 cardClasses={['col-md-6']}
 key="chart2"
 data={[{x: 'Eeny', y: 1122}, {x: 'Meeny', y: 2220}, {x: 'Miney', y: 910}]}
 settings={
 {
 type: 'pieChart',
 height: 300,
 }
 }
 />
 </div>
 </Dashboard>
)
 }
}

document.addEventListener('DOMContentLoaded', function(event) {
 ReactDOM.render(<App/>, document.getElementById('root'));
});

Javascript Settings object

In many cases it is useful to define dashboard configuration in JSON - allowing for database storage, programmatic creation, etc. Here is the above Dashboard defined as a Javascript object.

npm run js-example will load the following dashboard configuration at localhost:3000:

/**
 * A very simple Dashboard implementation using
 * a settings object
 */
import React, { Component } from 'react';
import ReactDOM from 'react-dom';
import { settings } from './settings';
import { Dashboard } from '../../src/ReactDashboard';
import 'fixed-data-table/dist/fixed-data-table.min.css';

/**
 * The settings object is passed as props to the Dashboard component
 **/
document.addEventListener('DOMContentLoaded', function(event) {
 ReactDOM.render(<Dashboard {...settings}/>, document.getElementById('root'));
});

Complete Dashboard Application

The app at /examples/app.js runs an example of a more robust application with datahandling, filtering, etc.

npm run start will from the react-dash repository will run the application.

Boilerplate project

The boilerplate module includes the above application in a complete development environment suitable for doing dashbaord development.

git clone https://github.com/NuCivic/react-dash-boilerplate.git
cd react-dash-boilerplate
npm install
npm run init
npm run start

This will spin up the example application, and you can use it as a starting point for developing your own app.

Application Entry Point - app.js

React dash is a libary for building apps, not an app itself. We need to provide a data handling framework, and we do that in our app.js. Take a look at /examples/app.js and follow along with the explanations below.
Also, for a good starting place for development, including a working skeleton of an application, along with a development environment, check out the boilerplate project [https://github.com/NuCivic/react-dash-boilerplate].

Extend Dashboard

getDashboardData

We extend the dashboard to provide an implementation of the getDashbaordData method.

Data is segmented into dataResources. Each dataResource or dataKey contains a discreet set of data. dataResources should be defined as an array settings.js / props. Each dataKey can contain data required for fetching given data. We leave the implementation details up to you. For more, see the section on Data Handling.

The dashboard is initialized with state.isFetching = false. getDashboardData should set this state paramater to false when all data has returned.

Also, getDashboardData() should set state.isFetching = false once all data has been returned.

As per normal REACT, the setState call will trigger a re-render of the dashboard, updating components as needed.

Configuring the dashboard - settings.js

settings.js defines a declarative configuration for our react-dash.

A simple example:

import 'bootstrap/dist/css/bootstrap.min.css';

export var settings = {
 title: 'React-Dash Javascript Settings Example',
 doFilterRouting: false,
 // regions are used by the dashboard to divide
 // the layout into rows using the bootstrap grid
 regions: [

 {
 id: 'text-row',
 className: 'row',
 children: [
 {
 type: 'DataTable',
 header: 'Mi titulo',
 cardClasses: ['col-md-6'],
 key:"my_table",
 data:
 [
 [
 {foo: 1, bar: 2},
 {foo: 11, bar: 21},
 {foo: 111, bar: 222},
 {foo: 1, bar: 2},
]
],
 settings: {
 table: {
 rowHeight: 40,
 width: 800,
 maxHeight: 300,
 headerHeight:40
 },
 columns: {
 flexGrow: 1,
 width: 150,
 },
 rows: {
 height: 40,
 }
 }
 }
]
 },

 {
 id: 'metrics-row',
 className: 'row',
 accordion: true,
 children: [
 // each child is a react component defined by type
 // paramaters are passed as props
 {
 type: 'Metric',
 caption: 'Caption A',
 cardStyle: 'metric',
 dataTrigger: 'A',
 iconClass: 'fa fa-bed',
 data: [1],
 background: '#687a99',
 className: 'col-md-4',
 key:"caption_1"
 },
 {
 type: 'Metric',
 caption: 'Caption B',
 dataTrigger: 'B',
 cardStyle: 'metric',
 iconClass: 'fa fa-bed',
 data: [2],
 background: '#689994',
 className: 'col-md-4',
 key:"caption_1"
 },
 {
 type: 'Metric',
 caption: 'Caption C',
 cardStyle: 'metric',
 dataTrigger: 'C',
 iconClass: 'fa fa-bed',
 data: [3],
 key:"caption_2",
 background: '#8f6899',
 className: 'col-md-4',
 }
]
 },
 {
 id: 'charts-row',
 className: 'row',
 children: [
 {
 type: 'Chart',
 cardStyle: 'chart',
 header: 'Header 1',
 iconClass: 'fa fa-cloud',
 className: 'col-md-6',
 key: 'c1',
 data: [{x: 'foo', y: 10}, {x: 'bar', y: 20}, {x: 'baz', y: 30}],
 settings: {
 type: 'pieChart',
 height: 300
 }
 },
 {
 type: 'Chart',
 cardStyle: 'chart',
 header: 'Header 2',
 iconClass: 'fa fa-cloud',
 className: 'col-md-6',
 key: 'c2',
 data: [{x: 'eeny', y: 110}, {x: 'meeny', y: 920}, {x: 'mo', y: 430}],
 settings: {
 type: 'pieChart',
 height: 300
 },
			},
 // start DataTable Example
 {
 type: 'DataTable',
 header: 'Mi titulo',
 data:
 [
 [
 {foo: 1, bar: 2},
 {foo: 11, bar: 21},
 {foo: 111, bar: 222},
 {foo: 1, bar: 2},
]
],
 settings: {
 table: {
 rowHeight: 40,
 width: 800,
 maxHeight: 300,
 headerHeight:40
 },
 columns: {
 flexGrow: 1,
 width: 150,
 },
 rows: {
 height: 40,
 }
 },
 overrides: {
 // target table columns with custom attributes
 // use column header name as key
 columns: {
 bar: {
 flexGrow: 9,
 className: 'greenCell'
 },
 },
 // target table rows with custom attributes
 // use row index as key
 rows: {
 1: {
 className: 'yellow'
 }
 },
 // target individual cells with custom attributes
 // define key using coordinate: headerName_rowIndex
 cells: {
 foo_1: {
 className: 'red'
 },
 }
 },
 },
 // end DataTable Example
]
 }
]
}

Regions

Boostrap rows

Regions are rendered into divs, allowing you to add bootstrap row class, and thus to organize the dashboard into rows using the responsive grid.

Conditional Rendering

If region.multi = true then you can use conditional rendering to render the region. If this is the case, then the region should contain an elements object. The elements object has keys which each contain a different array of elements. The muli-region should also define a datahandler. The datahandler returns a string which is used as the key to chose an array from the elements object.

@@TODO add example

Data Handling

	Overview

	Data Handlers

	State Handlers

	Backends

Overview

Dashboard Data Settings

Dashboard data is configured using the dataResources prop. The dataResources keys (also called dataKeys) refer to a settings object which is used by getDashboardData() to fetch data and populate the dashboard.

getDashboardData()

	Each dashboard implementation should include a getDashboardData() with the following responsibility:

	
	fetch data based on props.dataResources

	set data to dashboard using this.setState({data: fetchedData})

	set isFetching to false using this.setState({isFetching: false})

Dashboard Data Format

Dashboard data should be formated as follows:

data: {
 dataKey1: { //... },
 dataKey2: { //... }
 // ...
}

Each dataKey should represent a discreet data set. This division of data into seperate indexes allows us to target these indexes in our dataHandlers dataHandlers, filters, etc.

Component Data

Data is passed as a prop to components. Data should be formatted as an array, but the specific data format is determined by the component.

Each component can define data as an object, OR provide dataHandlers which return a data object.

See Components for more information about data format required by each component type.

Data Handlers

Data handlers are similar in principle to Redux reducers. They take as input the global dashboard state, and the dashboard data, and return a data object which is passed as props.data to the component which defined the handler.

datahandler definition

Datahandlers are defined as props at the component level - props.datahandlers is defined as an array of objects, where each object consists of a name property, as well as any number of additional properties, which are passed to the datahandler function as properties of the handler argument.

Consider the following dataHandler configuration for a chart component:

And following is the implmentation of the dataHandler function. It recieves the indicators array and colors array from the handler element, and uses them to generate the barChart data series.

datahandler arguments

componentData

Data set on the component as this.state.data - this could come from a fetch call, be passed as props, or through some novel method on a custom component.

dashboardData

Also referred to as globalData - this is the data available to the entire dashboard

handler

The handler as deffined in settings.js. Any properties set on the handler are available as handler.foo, etc

e

DEPRECATED This is an empty object in the current implementation.

appliedFilters

A global property of the dashboard which indicates what filters are applied at the global level. This object is pf the form:

{
 filterValueOne: ["val1", "val2"],
 filterValueTwo: ["val3"]
}

pipelineData

If datahandlers are chained, then pipelineData will be the return value of the previous datahandler in the chain. See chaining [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/below]

chaining

If the component.props.dataHandlers array has more than one datahandler then the return value from the first handler will be passed as pipelineData to subsequent handlers, in this way composition of components is possible, etc.

Existing Data Handler Libraries

common

Includes a library of common data transformations.
@@TODO document each handler, but for now you can look in ‘/src/datahandlers/common.js’

nvd3

A library of data handling functions for working with NVD3 chart data.
@@TODO document each handler, but for now you can look in ‘/src/datahandlers/NVD3.js’

State Handlers

State handlers (stateHandlers) work in a similar manner to data handlers [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/vdatahandlers], but they are called later in the lifecycle, AFTER the component has been populated with data. At this point the stateHandler

definition

stateHandlers are defined as props at the component level - props.datahandlers is defined as an array of objects, where each object consists of a name property, as well as any number of additional properties, which are passed to the datahandler function as properties of the handler argument.

Consider the following stateHandler configuration for a chart component:

The stateHandler should return a literal value, which will be applied the state using the handlers attribute property. When looking up props, the component checks the state first, and if that prop is set on the state, will use that instead, allowing the state to override props on a case-by-case basis, using stateHandler.attribute

Attributes

	name the name of the stateHandler function

	attribute the attribute of the component state which will be set with the return value of the stateHandler

	Any additional paramaters defined in the stateHandler’s settings will be available inside the stateHandler function as handler.myParam (for example)

Arguments

stateHandler arguments are the same as dataHandler arguments:
See data handler arguments [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandlers#arguments]

Backends

Data Backends

Data handling is up to you, but we are working on some backends to address common use cases.

CSV

Coming soon...

DKAN

Coming soon...

CartoDB

Coming soon...

Dashboard Filtering

The dashboard’s user interface is represented through filters components. Filters trigger actions on the Dashboard which update state.appliedFilters. This triggers a re-render, allowing the Dashboard to respond to the updated application state - by re-fetching data, filtering existing data, reconfiguring the Dashboard etc.

Filter

props

Filters take the following props:
type The component type. Filter components should extend BaseFilter component.
field This represents a key that will be used on the state.appliedFilters object. Depending on the implementation, it can also represent a field in the data.
action: NOT IMPLEMENTED. (This will allow for sort or other filter actions in the future)
willFilter An array of strings, each string corresponds with a dataResource or dataKey. This property indicates which part of the dashboard data the filter will be applied to.
disabledBy An array of strings, where each string corresponds to a field value of another filter. When that field value is present in appliedFilters, the filter’s html element will have the attribute disabled=true.
data / dataHandlers As with all components, data can be passed as an object literal, or calculated via dataHandlers. It should be an array of arrays, where each array is a series of key value pairs.
initVal An initial value for the filter.

Example

Consider this filter definition:

{
 type: 'Autocomplete',
 className: 'col-md-6',
 name: 'specialty-autocomplete',
 id: 'specialty-autocomplete',
 className: 'specialty-autocomplete',
 field: 'YearMonth',
 action: 'filter', // sort / groupBy / etc
 willFilter: ['climateData'], // array of dkanDataResources keys that filters affect
 data: [
 [
 { label: '2010', value: '2010' },
 { label: '2011', value: '2011' },
 { label: '2012', value: '2012' },
 { label: '2013', value: '2013' },
 { label: '2014', value: '2014' },
 { label: '2015', value: '2015' },
]
],
 placeholder: 'Select year to filter dashboard...'
}

This will create the following select box:

[image: ../_images/select_screenshot.png]
If the user selects a year, the dashboard’s state.appliedFilters object will be updated as follows:

state : {
 // ...
 appliedFilters: {
 YearMonth: ['2010']
 }
}

Out dataHandlers have access to the appliedFilters values and can filter data accordingly:

 Object.keys(appliedFilters).forEach(k => {
 if (k === "year" && appliedFilters[k].length > 0) {
 _data = _data.filter(row => {
 return _inYear(row, appliedFilters[k]);
 })
 }
 });

See also Actions.

Components

	Autocomplete Component

	Chart Component

	Dashboard Component

	Data Table

	Goal Component

	Loader

	Markup

	Metric Component

	Choropleth Maps

Autocomplete Component

Autocomplete uses the react select component https://github.com/JedWatson/react-select. As a result all the react select configurations can be passed in the element configuration.

{
 type: 'Autocomplete',
 name: 'some-name',
 multi: true,
 url: 'http://localhost:3004/options?q={{keyword}}',
},

Available settings

	willFilter: An array of values where each value referes to a dataResource which the filter applies to

	disabledBy: An array of values where each value is the field attribute of another filter. If the referenced filter is enabled, the current filter will be disabled.

	multi: you can enable multi-value selection by setting multi to true.

	field: an arbitrary name, or key, for the filter - this will be the key for state.appliedFilters[field]. It is often helpful for the field name to correspond to a column variable in your data.

	data: an array with options (e.g.: [{ value: ‘one’, label: ‘One’ }])

	dataHandlers: Alternately, you can use a data handler to return the component data - this is useful if your autocomplete options are derived from dashbaord data

Chart Component

[image: ../../_images/lineChart_0.4.png]
[image: ../../_images/pieChart_0.4.png]
[image: ../../_images/multiBarChart_0.4.png]
Chart component is a wrapper of the react-nvd3 library (@@LINK), which is also a wrapper of the nvd3 chart library. That meanas all the charts and options available in nvd3 are also available in this component.

{
 header:'Top',
 type: 'GAChart',
 iconClass: 'glyphicon glyphicon-tree-conifer',
 settings: {
 id:'lineChart2',
 type: 'discreteBarChart',
 x: 'label',
 y: 'value',
 height: 340,
 margin: {
 left: 38
 },
 color: ['#EA7E7E']
 },
 dataHandlers: ['getChartDaqta']
}

Notice that all the chart configuration goes inside the settings object.

If the x and y columns on your data already have the names you want, then you don’t need to specify the x and y settings.

Available settings

	settings Settings are passed the React NVD3 module. See React NVD3 documentation [https://github.com/NuCivic/react-nvd3]

	data If raw data is being passed, data should be formatted as per the NVD3 data requriments which vary based on chart type. See the NVD3 documentation and examples [https://nvd3-community.github.io/nvd3/examples/documentation.html] which oultine the proper shape for data.

	dataHandlers If you are using the react-dash internal data handling, make sure to pass data to one of the NVD3 Data Handlers [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandlers] as the final step of your data handling pipeline

Dashboard Component

Public Methods

method componentWillMount

Calls getDashboard when Dashboard is initally loaded.

method componentDidUpdate

Sets state.isFetching to true. Calls getDashboardData().

method getDashboardData

This is an abstract method. Your Dashboard should implement its own getDashboardData method which sets a data object to the dashboard in the following way:

// fetch data
setState({data: data});

When all data has been returned, getDashboardData() should set state.isFetching = false

method getFilters

Given a key, determine which filters should be applied to state.data[key];

method getChildData

Apply component dataHandlers and return data. Will return props.data if data is set as props on component.

Data Table

This is a fork of facebook’s fixed-data-table product [https://facebook.github.io/fixed-data-table/].

[image: ../../_images/DataTable_0.4.png]
Here’s an example of the configuration:

 {
 type: 'DataTable',
 header: 'Mi titulo',
 data:
 [
 [
 {foo: 1, bar: 2},
 {foo: 11, bar: 21},
 {foo: 111, bar: 222},
 {foo: 1, bar: 2},
]
],
 settings: {
 table: {
 rowHeight: 40,
 width: 800,
 maxHeight: 300,
 headerHeight:40
 },
 columns: {
 flexGrow: 1,
 width: 150,
 },
 rows: {
 height: 40,
 }
 },
 overrides: {
 // target table columns with custom attributes
 // use column header name as key
 columns: {
 bar: {
 flexGrow: 9,
 className: 'greenCell'
 },
 },
 // target table rows with custom attributes
 // use row index as key
 rows: {
 1: {
 className: 'yellow'
 }
 },
 // target individual cells with custom attributes
 // define key using coordinate: headerName_rowIndex
 cells: {
 foo_1: {
 className: 'red'
 },
 }
 },
 },

Available settings

	hideControls Hide the controls

	hideFilterHeader Hide the filter controls

	settings:
	settings.table: allows to configure all the properties for a table

	settings.columns: allows to configure all the properties for columns

	settings.cells: allows to configure all the properties for cells

	overrides: allows to override configurations for the cell in the row number used as key.

	settings.hideControls: Hide row-numbers select in table header..

	settings.hideFilterHeader: Hide filter box in table header.

	overrides
	overrides.columns An object keyed to the header title

	overrides.rows

	overrides.cells

** DATA **
Data should be in the format given in the example above. The first row of data will be used as headers.

Goal Component

React Dash allows you to define goals to accomplish and are measured against the data. Goals be displayed by increase, decrease, maintain or measure.

[image: ../../_images/Goal_0.4.png]
{
 type: 'GAGoal',
 title: '',
 caption: 'number of schools enrollments',
 link: 'http://tootherplace.com',
 icon: 'glyphicon-gbp',
 startDate: '03/24/2016',
 endDate: '04/24/2016',
 startNumber: 0,
 endNumber: 200,
 action: 'increase',
 background: 'white',
 // trackStatus: 'function',
 tolerance: [
 {from: 0, to: 2, label: 'On Track', color: 'green'},
 {from: 2, to: 5, label: 'Needs Improvement', color: 'orange'},
 {from: 5, to: Infinity, label: 'Off Track', color: 'red'},
],
 spline: {
 height: 50,
 },
 fetchData: {type:'function', name: 'getData'},
 metric: 'getRandomMetric'
}

Available settings

	caption: caption text using in the component. Only plain text is allowed.

	link: a url to redirect users when they click in the goal.

	startDate: date when you start to messure your goal

	endDate: date when you needs to reach the goal.

	startNumber: amount of units you start with.

	endNumber: amout of units you want to reach.

	action: the action you want to accomplish.

There are 6 possible values:

	increase: your goal is to increase the number of units. If the number of units are equal or greater than the endNumber then goal is on track.

	decrease: your goal is to decrease the number of units. If the number of units are equal or lower than the endNumber then goal is on track.

	maintain_above: this action is very similar to the increase action except startNumber and endNumber should be set at the same number.

	maintain_below: this action is very similar to the decrease action except startNumber and endNumber should be set at the same number.

	measure: in this case you don’t want to reach a goal but just display a mesure.

	tolerance: allow you to define a tolerance to define the status of your goal.

Let’s take a look at the above example. In that case if your deviation is between 0 and 2 then the OnTrack label will be displayed because the first item of tolerance will be selected.

Deviation is computed by projecting the number of units based on the startDate, endDate and endNumber and using a linear function. You can override the getTracker and the trackStatus functions if this projection doesn’t fit with your needs.

	spline: you can choose to additionally show a spline chart below the goal. If you choose to display the goal then you can set an object with the configuration needed to display the spline (e.g.: height).

Loader

Loader allows components to display a loader while they are fetching data.

class MyComponent extends BaseComponent {
 render(){
 return (
 <Loader isFetching={this.state.isFetching}>
 <MyComponent>
 //...
 </MyComponent>
 </Loader>
);
 }
}

As soon as state.isFetching is true then all the components inside and will display.

ifFetching is passed to components as props from the Dashboard state.isFetching

Markup

Markup component allows you to embed arbitrary html markup within your react dashboard layout.

For example - a static html list:

{
 type: 'Markup',
 content: '<div>\
 \
 FOO\
 BAR\
 BAZ\
 \
 </div>'
}

Available settings

	content: the html content to display.

Metric Component

[image: ../../_images/Metric_0.4.png]
Metrics are intended to display a single value to the end-user.

{
 type:'Metric',
 cardStyle: 'metric',
 iconClass: 'fa fa-clock',
 background: '#9F3E69',
 data: ['Provided Value'],
 caption: 'New Users',
}

Available settings

	background: the background color to be used for this metric.

	caption: a description to be displayed

	cardStyle: REQUIRED: must be ‘metric’

	iconClass: font-awesome icon class [http://fontawesome.io/icons/]

	data: a value for the metric. It should be a scalar value contained within an array

	dataHandlers: an arry containing dataHandler object(s)

	options: an array with options (e.g.: [{ value: ‘one’, label: ‘One’ }])

Choropleth Maps

[image: ../../_images/Choropleth_0.4.png]
@@TODO UPDATE - !!!this is out of date!!!
The Choropleth element provides a choropleth map (also known as a “heat map”) and a legend. The component uses a set of functions (choroplethFunctions) to map domain data to map polygons. The following elements are required to generate the Choropleth:

Map Data

Map data provides features suitable for rendering a d3 map. Two formats are supported: topojson and geojson.

Domain Data

Domain data provides the statistical data necessary to calculate the levels of the choropleth. As with all components, this can be provided by the globalData parameter, or fetched via a custom function or using any of the available backends.

Configuration object

{
 type: 'Choropleth',
 format: 'geojson',
 fetchData: {
 url: './data/apollo-parsed-1737-325_0.csv',
 type: 'backend',
 backend: 'csv',
 // delimiter: '\t'
 },
 id: 'Choropleth',
 dataKeyField: 'Zone',
 dataValueField: 'Total Observers',
 geometryKeyField: 'name',
 geometry: './data/zones.geojson', // topojson or geojson
 projection: 'equirectangular',
 scaleDenominator: .7,
 borderColor: '#000000',
 noDataColor: '#F3F3F3',
 dataClassification: 'equidistant',
 legend: {
 // startColor: 'red',
 // endColor: 'yellow',
 classesCount: 5,
 palleteKey: 'GnBu',
 pallete: ['#f0f9e8', '#bae4bc', '#7bccc4', '#43a2ca', '#0868ac'],
 domainStartValue: '',
 domainEndValue: '',
 }
 // customMin: '',
 // customMax: '',
 // topologyObject: 'counties'
}

Settings

	format: [string] type of geometry file to be used. Actually geojson and topojson geometries are supported.

	geometry:: [string] path to either a geojson or topojson file.

	geometryKeyField (geojson): [string] name of the property in the geometry file that will be used to join the domain data with the proper polygon.

	dataKeyField: [string] field in the domain data that will be used to join join the domain data with the proper polygon.

	dataValueField: [string] field in the domain data to calculate the levels of the choropleth.

	projection: [string] the projection to draw the geometry. Available projections can be found at https://github.com/d3/d3/wiki/Geo-Projections.

	scaleDenominator: [number] a number to scale the map according to an arbitrary factor - experiment to find the best result

	borderColor: [string] border color for each shape in the geometry

	noDataColor: [string] shape color when no data is available in a given polygon.

	startColor(linear scale): [string] color mapped to the lowest value in the domain data.

	endColor(linear scale): [string] color mapped to the highest value in the domain data.

	dataClassification: [string] kind of scale to be used for data classification. Linear and Equidistant scales are supported.

	legend
	classesCount the number of ranges to divide the domain data into

	pallete An array of css colors to represent the choro[pleth gradient]

Theming

Bootstrap grid

React Dash uses bootstrap responsive grid.
Full docs are here [https://v4-alpha.getbootstrap.com/layout/grid/]

Layout is defined as an array of regions. Each region represents a bootstrap row, as follows:

regions: [
 {
 className: 'row',
 children: [
 {
 type: 'Metric',
 value: 'A',
 className: 'col-4-md'
 },
 {,
 type: 'Metric',
 value: 'B',
 className: 'col-4-md'
 },
 {
 type: 'Metric',
 value: 'B',
 className: 'col-4-md'
 }
]
 }
]

Note that we’re just using the bootstrap classes to define the responsive grid.

cards

Component are rendered inside of the Card component [https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Card].

The Card component exposes a number of regions which can be targeted as props:

custom css

The index.html file in the examples project loads static/custom.css. Add custom css here.

inline styles

Define a style object in settings.js:

{
 type: 'yourComponentType',
 style: {height: '100%', maxWidth: '60%', fontFamily: '"Times New Roman", Georgia, Serif'}
}

Project Workflows

NOTE that these docs relate to internal react-dash development workflows, not to implementations or library usage

	NPM Publication

NPM Publication

NOTE that this page relate to internal react-dash development workflows, not to implementations or library usage

Versioning Info

We use semver http://semver.org/ :
x.y.z x = major version (not currently implemented), y = minor version, z = patch version
minor versions are NOT backward compatible before v1.0.0 (0.7.x is not guaranteed to be backwards compatible with 0.6.x)
patch versions should maintain backwards compatibility (0.7.2 should be compatible with 0.7.3)

##Workflow

	Do development

	Test / QA

	update changelog

	git commit -am "Commit message - includes build"

	git push origin my-dev-branch

	Submit PR - include description of work done, include acceptance criteria

	Confirm that PR is merged, then...

	git pull

	npm run build

	git add --force dist/

	git co -b release.x.y.z

	git ci -a

	git br -D release.x.y.z

	npm version patch/minor

	npm publish

	git push --tags

	confirm that publication was successful (eg: npm install react-dash@0.3.5 then confirm that code updates are valid)

Roadmap

	move actions to own file and allow users to define customActions.js

	move components from inheritance to HOC

	create project location for custom components

	expose more robust interface to filter behavior

	implement timeline functionality - where each tick updates filter values and dashboard state

	implement websockets interface

	cartodb backend

	unify backends / better define backend interface (using dkan_dash module interface as model / starting place)

Implementation Examples

	Hours Worked Performance Dashboard [http://dev-react-dashboard-demo.getnucivic.com/dashboard/19]

	Current Library Example [http://nucivic.github.io/react-dash/]

	UCR Arrest Data Dashboard [http://dev-ucr-dashboard.getnucivic.com/dashboard/12]

Ecosystem

React-dash is an npm library that serves as a toolkit for doing rapid prototyping and development.

In order to further speed development, we also provide a boilerplate module [https://github.com/NuCivic/react-dash-boilerplate] with which to build standalone projects.

For Drupal and DKAN development, we provide a Drupal Module [https://github.com/NuCivic/react_dashboard] which allows you to easily embed a compiled dashboard into a drupal page, provides menu callbacks, and other useful features.

[image: _images/react_dash_dkan_ecosystem_0.4.png]

Contribute to React Dash

Visit our Github Page [https://github.com/NuCivic/react-dash] to:

	Report a bug

	Submit a patch or pull request

	Suggest an improvement

	Show us what you have built!

Index

Actions

In order to change dashboard state, components need to fire actions. Actions are handled at the Dashboard level and can update the state. For instance, filters fire actions that update state.appliedFilters. The appliedFilters object is passed to dataHandlers and can be used for filtering data or making decisions about component state.

All components that inherit from BaseComponent have a method called emit. Emit triggers actions and an onAction method that is automatically called when an action is fired from any component.

It’s worth mentioning the emit method returns a regular javascript object. By convention it should have an actionType but the rest is up to you.

action payload

Actions deliver a payload. The payload has the following attributes:

	actionType This determines which onAction hook is fired by the dashboard. You can define new onAction cases by extending the dashboard in your app. Filter components should define an actionType.

	field Field value defines the key on the appliedFilters object (state.appliedFilters[field]). It is often useful for the field value to correspond to a column in your data (for instance, filter by year field, where year is a column in your data)

	value In all of our current filter implementations, this is an array of objects:

 [
 {label: '2012', value}
]

	filter props As a matter of convention we include all filter props as attributes to the payload. Some of these attributes are used to determine how to apply the filters. See Filter

##appliedFilters
The react-dash has a state.appliedFilters object which encapsulates the current dashboard configuration. The object looks like:

apliedFilters: {
 fieldName1: ["foo"],
 fieldName2: [1, 10, 100]
 // ...
}

Applied filters should be used to filter data in your app, update application state, etc.

See also the section on Filter

Overview

The basic data pipeline looks something like this:

	Dashboard is instantiated with state.fetching = true

	Dashboard calls getDashboard() method - it is up to you, the implementer, to define this method.

	When Dashboard renders each component it looks to see if there are:

	
	dataHandlers set. If so, it uses the output of the dataHandlers as the data attribute of the component (props.data

	
	data set. Data array is passed to component.

Raw Data

Raw data is passed via the data prop. If the data is in the correct format, as specified by the component specification, it will be rendered as is.

example:

{
 type: 'chart',
 settings: {
 x: 'val',
 y: 'key'
 // ...
 },
 data: [
 [{key: 'a', val: 1}, {key:'a', val: 2}, {key: 'a', val: 3}]
]
}

Here data is a an array containing a single series which represents variable a as a linear progression. Note that the series is contained as an array, as expected by most of our components.
See Data Format [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/dataFormat].

Data Handlers (dataHandlers)

In React Dash, data handlers act similaryly to reducers. The are given the dashboard’s data and state, and reduce the input to a data object which is passed to a component as props.data.

See Data Handlers

Backends

example:

{
 // ... other component configuration
 data: {
 type: 'backend',
 backend: 'CSV',
 url: '/path/to/your.csv'
 // delimeter: '\t' // optionally specify a
 }
}

Data can fetched using one of the existing data backends. Currently, react dashboard supports the following backends:

	CSV [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/backends#csv]

Data

Raw data is passed via the data prop. If the data is in the correct format, as specified by the component specification, it will be rendered as is.

example:

{
 type: 'chart',
 settings: {
 x: 'val',
 y: 'key'
 // ...
 },
 data: [
 [{key: 'a', val: 1}, {key:'a', val: 2}, {key: 'a', val: 3}]
]
}

Here data is a an array containing a single series which represents variable a as a linear progression. Note that the series is contained as an array, as expected by most of our components.
See Data Format [https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/dataFormat].

Style Elements

 _images/Metric_0.4.png

_images/multiBarChart_0.4.png
&

24

s

1

5

05

o

g

05

@Grouped Ostacked . T

_images/pieChart_0.4.png
@OFMLA FUNERAL @FURLOUGH @ JURY DUTY
‘@MEDICAL @ MILITARY @siCK. ® SUSPENSION
‘@ UNPAID ABSENCE () WORKERS COMP

_images/Choropleth_0.4.png

_static/comment-close.png

_images/nvd3_charts.png
FreeeiieRat

_images/select_screenshot.png
Select year tofiter dashboard.

2010

20

2012

2013

2014

_static/up.png

_static/minus.png

_images/lineChart_0.4.png
@ weekdy Period

160
140
120
100
80|
&0

4o}
03/05/2010

M Weekly Period 25
4 ——
1212512009 0082010 01202010 0V3L2010 02122010 02242010 03072010 031972010 03302010 04/11/2010 041302010

20}

_images/react_dash_dkan_ecosystem_0.4.png
REACT DASH -~ DKAN ECOSYSTEM

NPM Public Repo

NuCivic - github

Drupal Module

_images/Goal_0.4.png
‘ Maintain budget within specified bounds.

OFF TRACK
2 April 24th 2016
1,484,666,063,527 | 47.24
——

——— ——~

_images/DataTable_0.4.png
Filter

agency count
Saint Croix Tribal P 184
Saint Croix Tribal P 16
Saint Croix Tribal P 13
Saint Croix Tribal P 13
Saint Croix Tribal P 13
Saint Croix Tribal P 12
Saint Croix Tribal P 11
Saint Croix Tribal P 9
Saint Croix Tribal P 8

Saint Croix Tribal P 7

description

null

All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr

All Other (Except Tr

.2345678910»»

July

Nov

year

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

category
Grand Total
Other
Other
Other
Other
Other
Other
Other
Other

Other

county
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal

Tribal

adult_or_jt
Total
Total
Total
Total
Total
Total
Total
Total
Total

Total

nav.xhtml

 Table of Contents

 		Features

 		Getting Started

 		Starting a project with the boilerplate module

 		Run the example project that ships with the react-dash project

 		Building a DKAN project

 		Features

 		NVD3 Chart Components

 		Filters

 		Select Filter

 		Autocomplete Filter

 		Checkbox Filter

 		Map Components

 		Data Table

 		Metric Component

 		Text component

 		Developer Guide

 		Overview

 		JSX

 		Javascript Settings object

 		Complete Dashboard Application

 		Boilerplate project

 		Application Entry Point - app.js

 		Extend Dashboard

 		Configuring the dashboard - settings.js

 		Regions

 		Data Handling

 		Overview

 		Data Handlers

 		State Handlers

 		Backends

 		Data Backends

 		CSV

 		DKAN

 		CartoDB

 		Dashboard Filtering

 		Filter

 		Example

 		Components

 		Autocomplete Component

 		Chart Component

 		Dashboard Component

 		Data Table

 		Goal Component

 		Loader

 		Markup

 		Metric Component

 		Choropleth Maps

 		Theming

 		Bootstrap grid

 		cards

 		custom css

 		inline styles

 		Project Workflows

 		NPM Publication

 		Roadmap

 		Implementation Examples

 		Ecosystem

 		Contribute to React Dash

_static/react_dash_dkan_ecosystem_0.4.png
REACT DASH -~ DKAN ECOSYSTEM

NPM Public Repo

NuCivic - github

Drupal Module

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/select_screenshot.png
Select year tofiter dashboard.

2010

20

2012

2013

2014

_static/components/lineChart_0.4.png
@ weekdy Period

160
140
120
100
80|
&0

4o}
03/05/2010

M Weekly Period 25
4 ——
1212512009 0082010 01202010 0V3L2010 02122010 02242010 03072010 031972010 03302010 04/11/2010 041302010

20}

_static/components/DataTable_0.4.png
Filter

agency count
Saint Croix Tribal P 184
Saint Croix Tribal P 16
Saint Croix Tribal P 13
Saint Croix Tribal P 13
Saint Croix Tribal P 13
Saint Croix Tribal P 12
Saint Croix Tribal P 11
Saint Croix Tribal P 9
Saint Croix Tribal P 8

Saint Croix Tribal P 7

description

null

All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr
All Other (Except Tr

All Other (Except Tr

.2345678910»»

July

Nov

year

2010

2010

2010

2010

2010

2010

2010

2010

2010

2010

category
Grand Total
Other
Other
Other
Other
Other
Other
Other
Other

Other

county
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal
Tribal

Tribal

adult_or_jt
Total
Total
Total
Total
Total
Total
Total
Total
Total

Total

_static/features/nvd3_charts.png
FreeeiieRat

_static/components/Goal_0.4.png
‘ Maintain budget within specified bounds.

OFF TRACK
2 April 24th 2016
1,484,666,063,527 | 47.24
——

——— ——~

_static/components/Metric_0.4.png

_static/components/Markup_0.4.png

_static/components/pieChart_0.4.png
@OFMLA FUNERAL @FURLOUGH @ JURY DUTY
‘@MEDICAL @ MILITARY @siCK. ® SUSPENSION
‘@ UNPAID ABSENCE () WORKERS COMP

_static/components/Choropleth_0.4.png

_static/components/multiBarChart_0.4.png
&

24

s

1

5

05

o

g

05

@Grouped Ostacked . T

