
DKAN Documentation
Release

DKAN

Jan 20, 2017

Contents

1 Table of Contents 3

i

ii

DKAN Documentation, Release

React Dash is a library for quickly building custom data visualization dashboards based on re-usable components.

• Chart Components Using NVD3

• Choropleth Maps in geoJson and topoJson

• HTML Components

• Custom Filtering

• Custom Data Handling

• CSV Integration

• DKAN API Integration

Contents 1

DKAN Documentation, Release

2 Contents

CHAPTER 1

Table of Contents

1.1 Getting Started

1.1.1 Starting a project with the boilerplate module

The react-dash-boilerplate project provides a starter project and a development environment for doing react-dash
development. It’s a good place to start.

• Make sure that you have npm installed on your system

• Install the react-dashboard-boilerplate project and its dependencies:

git clone https://github.com/NuCivic/react-dashboard-boilerplate.git
cd react-dashboard-boilerplate
npm install
npm run init
npm run start

• Visit http://localhost:5000 on your system - if everything was successful, you should see an example dashboard

• Look at our Developer’s Guide for next steps to customize your dash!

1.1.2 Copying the example project from the react-dash repo

If you can’t get the boilerplate project to install, just download the react-dash project and use the example project as a
starting place.

• Make sure that you have npm installed on your system

• Clone the react-dash repository

git clone https://github.com/NuCivic/react-dashboard.git

• Install dependencies and start the development server

3

DKAN Documentation, Release

npm install
npm run start

• Look in the examples/ folder for the project source

• Take a look at our Developer’s Guide for next steps to customize your dash!

1.1.3 Building a DKAN project

Visit the Drupal Module page for more on Drupal Dkan development

1.2 Developer Guide

1.2.1 Overview

The best way to start a react-dash project is to install the boilerplate module. See Getting Started.

Once the project is installed, you will have a directory structure that looks something like this:

package.json
node_modules/
webpack.config
index.html
dist/

bundle.js
bundle.css

src/
app.js
settings.js
customDatahandlers.js
static/
custom.css
your.img

The most important files here are in the src/ directory. Not counting static files (image resources, css, etc), you
should only need to modify the following files:

app.js

This file contains the boilerplate code to load a dashboard component into the root element of your index.html file. It is
possible, but not necessary, to do initial preparatory work here, for instance fetching dashboard data (see Initializeing
Dashboard Data)

settings.js

This file contains a javascript object with a declarative configuration for the dashboard. Here we define the dashboard
components and settings.

customDatahandlers.js

A library of functions that we use to preprocess data.

4 Chapter 1. Table of Contents

https://github.com/NuCivic/dkan/tree/rtd/docs/development/index.html
https://github.com/NuCivic/react_dashboard
https://github.com/NuCivic/dkan/tree/rtd/docs/development/@@LINK
https://github.com/NuCivic/dkan/tree/rtd/docs/development/@@LINK

DKAN Documentation, Release

1.2.2 Building the Dashboard

When development is done, you need to build the dashboard.

standalone project

Standalone allows you to ouput a javascript bundle that you can embed in any website. If you are using the boiler-
plate project, run npm run build_standalone. If you are building from the example folder of the react-dash
library run npm run build. It is also possible to provide an additional webpack configuration file that suits your
development or production needs. Consult the webpack documentation.

dkan project

From inside of the react_dashboard/app directory run npm run build_dkan. This will output the com-
piled javascript and css bundles in the proper location for the react_dashboard module to load them. See the re-
act_dashboard docs for greater detail.

additional integrations

Interested in integrating another platform? Written an integration? File an issue

1.2.3 Application Entry Point - app.js

1 import React, { Component } from 'react';
2 import ReactDOM from 'react-dom';
3 import { settings } from './settings';
4 import { Router, Route, browserHistory } from 'react-router';
5 import { Dashboard } from '../src/ReactDashboard';
6 let _settings;
7 if (typeof expressDashSettings != "undefined") {
8 _settings = expressDashSettings;
9 } else {

10 _settings = settings;
11 }
12

13 // We extend the Dashboard so we can pass Routing info from the App
14 class MyDashboard extends Component {
15 render() {
16 let z = {};
17 z.appliedFilters = (this.state) ? this.state.appliedFiltersi : {};
18 const props = Object.assign({}, this.props, z, _settings);
19 return <Dashboard {...props}/>
20 }
21 }
22

23 // Wrap Dashboard component in router
24 class App extends Component {
25 render() {
26 return (
27 <div id="router-container">
28 <Router history={browserHistory}>
29 <Route path='*' component={MyDashboard} />
30 <Route path='/react-dashboard' component={MyDashboard} />

1.2. Developer Guide 5

https://webpack.github.io/docs/
https://github.com/NuCivic/react_dashboard
https://github.com/NuCivic/react_dashboard
https://github.com/NuCivic/react_dashboard/issues

DKAN Documentation, Release

31 </Router>
32 </div>
33)
34 }
35 }
36

37 // Now put it in the DOM!
38 document.addEventListener('DOMContentLoaded', function(event) {
39 ReactDOM.render(<App/>, document.getElementById('root'));
40 });

If you need to do custom initialization of data that cannot be accomodated with the existing backends, do it here.
@@TODO Add example of custom fetch code here

1.2.4 Configuring the dashboard - settings.js

settings.js defines a declarative configuration for our react-dash.

Lets look at a few examples.

A NOTE ABOUT ENVIRONMENTS The examples assume that you are using the react-dashboard-boilerplate
module or a similar development environment which will load the examples from a settings.js file.

If you are using gist files with react-dash-server you will need to remove the export statement and convert the javascript
settings object to JSON.

EXAMPLE 1 - Simple pie chart with header

Our hello world example consists of a single pie chart with some static values.

export var settings = {
title: 'Hello World',
components: [
{

type: 'Chart',
cardStyle: 'Chart',
header: 'My Pie Chart',
data: [[{x: 1, y: 40}, {x: 2, y: 40}, {x: 3, y: 20}]],
dataHandlers: ['NVD3.toPieChartSeries'],
settings: {

type: 'pieChart',
x: 'x',
y: 'y',
height: '600'

},
}

]
}

Note that we use a datahandler to convert from our standard data format (an array of series). This is to account for
the data ‘shape’ that nvd3 expects for its pie chart. See NVD3 Examples for a better understandoing of how NVD3
expects data to be formatted.

6 Chapter 1. Table of Contents

https://github.com/NuCivic/react-dashboard-boilerplate
https://github.com/NuCivic/react-dashboard-boilerplate
https://github.com/NuCivic/react-dash-server/blob/master/README.md
http://nvd3.org/examples/

DKAN Documentation, Release

EXAMPLE 2 - Regions

export var settings = {
title: 'Hello World',
components: [
{

type: 'Chart',
cardStyle: 'Chart',
header: 'My Pie Chart',
data: [[{x: 1, y: 40}, {x: 2, y: 40}, {x: 3, y: 20}]],
dataHandlers: ['NVD3.toPieChartSeries'],
settings: {

type: 'pieChart',
x: 'x',
y: 'y',
height: '600'

},
},
{

type: 'Region',
className: 'row', // row class is used by twitter Bootstrap
children: [

{
type: 'Metric',
cardStyle: 'Metric',
iconClass: 'fa fa-level-up',
className: 'col-md-4', // col class used by twitter Bootstrap
caption: 'Test A',
data: ['A'] // an arbitrary value for our example

},
{
type: 'Metric',
cardStyle: 'Metric',
iconClass: 'fa fa-level-down',
className: 'col-md-4',
background: '#53ACC9',
caption: 'Test B',
data: ['B']

},
{
type: 'Metric',
cardStyle: 'Metric',
iconClass: 'fa fa-fire',
caption: 'Test C',
background: '#C97053',
className: 'col-md-4',
data: ['C']

}
]

}
]

}

We’re starting to introduce more dashboard functionality here, including the use of the Bootstrap grid, by using regions,
which have className: 'row' and children which have className: 'col-md-4'. More on the Metric
component here More on theming and bootstrap grid here More on the Region component here

1.2. Developer Guide 7

https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Metric
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Metric
https://github.com/NuCivic/dkan/tree/rtd/docs/development/theming
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Region

DKAN Documentation, Release

Fecthing Data and Beyond

For now, use the /examples/settings.js file as a guide to understand some of the more complex applications of the
dashboard. It includes various examples of fetching and handling data, different chart configurations etc.

1.2.5 Data Handling

React-dash can be instantiated without any data processing, simply by passing data as an object, in the specified format
(see format, below). In this way, you can implment the react-dash as a view-layer of an application, or as a client to a
service that provides data in the specified formats. The dashboard currently provides a basic framework for fetching
and processing data.

Overview

All components that extend the Base Component, including the Dashboard Component can receive data in three ways,
depending on how the component (or the dashboard) is configured:

Raw Data

Raw data is passed via the data prop. If the data is in the correct format, as specified by the component specification,
it will be rendered as is.

example:

{
type: 'chart',
settings: {
x: 'val',
y: 'key'
// ...

},
data: [
[{key: 'a', val: 1}, {key:'a', val: 2}, {key: 'a', val: 3}]

]
}

Here data is a an array containing a single series which represents variable a as a linear progression. Note that the
series is contained as an array, as expected by most of our components. See Data Format.

Backends

example:

{
// ... other component configuration
data: {
type: 'backend',
backend: 'CSV',
url: '/path/to/your.csv'
// delimeter: '\t' // optionally specify a

}
}

8 Chapter 1. Table of Contents

https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Base
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Dashboard
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/dataFormat

DKAN Documentation, Release

Data can fetched using one of the existing data backends. Currently, react dashboard supports the following backends:

• CSV

Custom Data Handlers

Data handlers allow you to write custom code to determine how to generate component data or dashboard data.

An example of a component that uses a data handler to generate its data:

in settings.js:

{
// ...other component configuration
dataHandlers: [
{

name: getCustomData,
fields: ['field1', 'field2']

}
]

}

in customDatahanders.js

getCustomData: function (componentData, dashboardData, handler, e, appliedFilters,
→˓pipelineData) {
let _data = dashboardData;
let fields = handler.fields;
return _.data.map(row => {
let newRow = {};
fields.forEach(field => {

newRow[field] = row[field];
});
return newRow;

});
}

In this example, we tell our component to use a custom datahandler called getCustomData. We use an array of field
names to select a subset of the dashboard’s global data. See datahandler settings object amd datahandler paramaters
below:

datahandler settings object

Datahandlers are defined in settings.js as an object with a unique name paramter. Dot notation can be used in
the name to provide structure to your library of datahandlers, if needed.

All paramters except for name will be passed to the datahandler function as paramaters to the handler argument,
and can be used example:

// in settings.js
{

type: 'metricComponent'
dataHandlers: [
{

name: 'anotherCustomeHandler',
arg1: {foo: 'bar', bar: 'baz'},
arg2: [1,2,3],

1.2. Developer Guide 9

https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/backends#csv
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandler-settings-object
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandler-paramaters

DKAN Documentation, Release

// etc - any valid javascript/json data can be passed to the data handler
}

]
}

These attributes can now be used within anotherCustomHandler by accessing handler.arg1, handler.
arg2, etc.

datahandler paramaters

Data handler functions receive the following paramaters:

• componentData - any data set on the calling component

• dashboardData - also known as globalData, data set at the top level of the dashboard

• handler - the handler object as defined in settings.js. All paramaters, except the required name paramter will
be properties of this object, accessible inside the handler’s scope

• e - if the datahandler is called after an action, the jevascript event which fired the action. Useful for handling
filter events and user interactions which update data. See Actions

• appliedFilters - Any filters which have been applied on the dashboard. See Actions

• pipelineData - If the component has defined an array of datahandlers, subsequent datahandlers will be passed
the return value from the previous handler, otherwise undefined. See chaining

chaining

Data handlers can be chained, in which case the return value from each handler is passed to the following handler in
the chain as pipelineData. A trivial example follows:

// assume that globalData is as follows:
{

seriesOne: [{key: 1, val: 1}, {key: 1, val: 2}, {key: 2, val:2 }],
seriesTwo: [{key: a, val: 11}, {key: b, val: 2}, {key: c, val:6 }]
// ...

}

// settings.js
{

type: 'Metric',
dataHandlers: [
{

name: 'getSeriesByIndex',
index: 'seriesOne'

},
{

name: 'addOne',
x: 'val'

},
{

name: 'double',
x: 'val'

}
]

}

10 Chapter 1. Table of Contents

https://github.com/NuCivic/dkan/tree/rtd/docs/development/actions
https://github.com/NuCivic/dkan/tree/rtd/docs/development/actions

DKAN Documentation, Release

// customDatahandlers.js
/**
* returns keyed data from globalData

**/
function getSeriesByIndex(componentData, dashboardData, handler, e, appliedFilters,
→˓pipelineData) {
return [globalData[handler.index]]

}

/**
* Adds one to all values

**/
function addOne(componentData, dashboardData, handler, e, appliedFilters,
→˓pipelineData) {
// check for pipeline data first, or use componentData if exists
let _data = pipelineData || componentData || [];
_data.map(series => {
series.forEach(row => {

row[handler.x] = row[handler.x]*2
});
return series;

})
}

I’ll leave it as an excercise for you to implement the double dataHandler :)

registering data handlers

In order for everything to work, data handlers must be registered as follows:

// customDatahandlers.js
import DataHandler from 'react-dash';

function exampleHandler(componentData, dashboardData, handler, e, appliedFilters,
→˓pipelineData) {
// ... your handler code

}

DataHandler.set('exampleHandler', exampleHandler);

// OR:
let handlers = {
handler1: function(componentData, dashboardData, handler, e, appliedFilters,

→˓pipelineData) {
// ... your code

},

handler2: function (componentData, dashboardData, handler, e, appliedFilters,
→˓pipelineData) {

// ... your code
},

// ...
}

for (let k in handlers) {

1.2. Developer Guide 11

DKAN Documentation, Release

DataHandler.set(k, customDataHandlers[k]);
}

@@TODO Provided Data Handlers

Global Data

Data which is set to the top-level Dashboard component is passed to all components as a globalData prop. It is also
available inside of data handlers as the dashboardData argument. Data is assigned to the dashboard as a whole in
the same way as it is assigned components, using data, backends, or customDatahandlers.

@@TODO EXAMPLE HERE

Data Handlers

In order to facilitate the custom handling of data we have introduced the concept of datahandlers. Datahandlers are
functions that transform data - they can accept arbitrary paramaters, and have access to the following arguments:

datahandler definition

Datahandlers are defined as props at the component level - props.datahandlers is defined as an array of objects,
where each object consists of a name property, as well as any number of additional properties, which are passed to the
datahandler function as properties of the handler argument.

Consider:

‘‘javascript // settings.js: { type: ‘Metric’, caption: ‘My Cool Metric’, dataHandlers: [{ name: ‘getRandomMetric’ },
{ name: ‘multiplyByFactor’, factor: 2 }, { name: ‘multiplyByFactor’, factor: 4 }] }

Take a look at examples/customDatahandlers.js for an example implementation.

datahandler arguments

componentData
Data set on the component as this.state.data - this could come from a fetch call, be
→˓passed as props, or through some novel method on a custom component.

dashboardData
Also referred to as globalData - this is the data available to the entire dashboard

handler
The handler as deffined in settings.js. Any properties set on the handler are
→˓available as `handler.foo`, etc

e
Filters use the *e* property to capture the javascript event and pass it along for
→˓use in the handler

appliedFilters
A global property of the dashboard which indicates what filters are applied at the
→˓global level. This object is pf the form:
```javascript
{

12 Chapter 1. Table of Contents



DKAN Documentation, Release

filterValueOne: ["val1", "val2"],
filterValueTwo: ["val3"]

}

pipelineData

If datahandlers are chained, then pipelineData will be the return value of the previous datahandler in the chain. See
chaining

chaining

If the component.props.dataHandlers array has more than one datahandler then the return value from the first handler
will be passed as pipelineData to subsequent handlers, in this way composition of components is possible, etc.

Data Format

In most cases, data is considered as an array ([]). Multiple series of data can be represented as an array of arrays:

[
[ {key: 1, val: 2}, {key: 1: val: 1}, {key: 1, val: 5} ],
[ {key: 2, val: 4}, {key: 2, val: 5}, {key: 2, val: 7} ],
// ...

]

Data for a Metric Component could be represented as [1234] where 1234 is the value passed to the mertric.

Note that in most places we assume that single series and even single scalar values will be represented within an array.

This is not a hard and fast rule - components define their own data formats, but dataHandlers will make some assump-
tions about data, so it is good to follow these conventions.

Backends

NVD3

NVD3 provides the primary graphing engine in react-dash, via the react-nvd3 module.

NVD3 has it’s own, sometimes confused, opinions about the shape that data should come in. React-dash provides a
few basic adaptors that allow us to transform data from our own, sometimes confused, data format. This allows us to
keep data in our preferred format until the very last minute, when NVD3 needs it.

Note We considered implementing this in the Chart component, and hiding all of this from the library user, but thought
it was better (if a bit more laborious) to allow the developer greater flexibility with the data.

The adaptors are implemented and userd like any other datahandler:

NVD3.returnChartSeries

Assume that our data is represeted by two series of data in our preferred format:

1.2. Developer Guide 13

https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/below
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Metric
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components
http://nvd3.org
https://github.com/NuCivic/react-nvd3
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandlers
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/format


DKAN Documentation, Release

[
[ {a: 1, b: 1}, {a: 2, b: 2 }, {a:3, b: 2} ], // series one
[ {foo: 1, bar: 1}, {foo: 2, bar: 2 }, {foo:3, bar: 2} ], // series two

]

Then the config in settings.js will look like this:

{
type: 'Chart',
data: [], // put data here
settings: {

// ... put settings here
},
dataHandlers: [

{name :}
]

}

NVD3.returnChartSeries is suitable for use for all nvd3 chart types (I think) except pieChart, which uses:

NVD3.toPieChartSeries

Similar to returnChartSeries. Expects the same input format but the output format is different.

1.2.6 Data Backends

CSV

1.2.7 Actions

Sometimes you need to tell other components about a change that happened in your dashboard. For example, a change
in the underlying dashboard data after adding a new selection in the autocomplete.

This is handled through actions.

All components have a method called emit. Emit triggers actions and an onAction method that is automatically called
when an action is fired from any component.

It’s worth mentioning the emit method returns a regular javascript object. By convention it should have an actionType
but the rest is up to you.

@@TODO update / verify example

// Component emitting a change
onClick(){

this.emit({
actionType: 'CHANGE',
data: data

});
}

// Component receiving a change
onAction(action){

switch(action.actionType){
case 'CHANGE':

// Do some in

14 Chapter 1. Table of Contents



DKAN Documentation, Release

break;
}

}

1.2.8 Filter components

Filters

Filters allow data to be filtered based on user input, application state, or other custom logic. Filters use dom events
and custom data handlers to provide filtered data.

Component-level filters

Filters can be used to allow user input which controls the data at the component level. Filters use dataHandlers, along
with user input, to determine how to filter component data. Filters are configured as follows

Filter Paramaters

Filter paramaters are serialized to the url, allowing the dashboard to be loaded with a set of filters already applied. The
url query string is serialized according to the following scheme:

http://yoursite.com/dashboard/cid1=key1_val1&cid_1=key1_val2&cid2=key2_val3

{
cid1: {
key1 : ['val1', 'val2']

},
cid2: {
key2 : val2

}
}

Components recieve their ownParams as props. So for copoment with cid1:

component.props.ownParams = { key1: ['val1', 'val2'] }

//@@TODO

Dashboard-level filters

@@TODO Autocomplete / Actions / data handlers

Theming

Dashboard-level theming

The React Dash comes with default styles, but you can also customize them by importing a stylesheet.

1.2. Developer Guide 15



DKAN Documentation, Release

// file: entry point
// standalone.js or dkan.js
import 'stylesheets/custom.css'

Currently you can use either a css or a sass file. You can also add import sentences inside to split the files. It’s good to
have a separate stylesheet for each component you are overriding.

Cards

@@TODO clarify If a cardStyle property is specified, the component will be rendered inside a car div.

Componentlevel theming

Components can take a style object as follows:

style: {backgroundColor: 'red', fontSize: '1em', margin: '1em'}

1.2.9 Components

Autocomplete Component

Autocomplete uses the react select component https://github.com/JedWatson/react-select. As a result all the react
select configurations can be passed in the element configuration.

Usually you won’t need to extend this component. Autocomplete has standard behavior and is highly configurable.

{
type: 'Autocomplete',
name: 'some-name',
multi: true,
url: 'http://localhost:3004/options?q={{keyword}}',

},

Available settings

• url: url to fetch the options base on the keyword you typed in the input.

• multi: you can enable multi-value selection by setting multi to true.

• name: an arbitrary name.

• options: an array with options (e.g.: [{ value: ‘one’, label: ‘One’ }])

16 Chapter 1. Table of Contents



DKAN Documentation, Release

Base Component

Chart Component

Chart component is a wrapper of the react-nvd3 library, which is also a wrapper of the nvd3 chart library. That meanas
all the charts and options available in nvd3 are also available in this component.

{
header:'Top',
type: 'GAChart',
iconClass: 'glyphicon glyphicon-tree-conifer',
settings: {
id:'lineChart2',
type: 'discreteBarChart',
x: 'label',
y: 'value',
height: 340,
margin: {

left: 38
},
color: ['#EA7E7E']

},
fetchData: {type:'function', name: 'getData'},

}

Notice that all the chart configuration goes inside the settings object.

id, type, fetchData and height are mandatory.

If the x and y columns on your data already have the names you want, then you don’t need to specify the x and y
settings.

1.2. Developer Guide 17



DKAN Documentation, Release

Available settings

• settings Settings are passed the React NVD3 module. See React NVD3 documentation

• data If raw data is being passed, data should be formatted as per the NVD3 data requriments which vary based
on chart type. See the NVD3 documentation and examples which oultine the proper shape for data.

• dataHandlers If you are using the react-dash internal data handling, make sure to pass data to one of the NVD3
Data Handlers as the final step of your data handling pipeline

Dashboard Component

Data Table

DataTable component provides a way to browse, filter, search and display datasets to end-users.

{
type: 'GATable',
header: 'Mi titulo',
fetchData: {
type:'backend',
backend: 'csv',
url: 'http://demo.getdkan.com/node/9/download',

},
settings: {
table: {

rowHeight: 40,
width: 800,
maxHeight: 300,
headerHeight:40

},
columns: {

flexGrow: 1,
width: 150,
overrides: {

a1: {

18 Chapter 1. Table of Contents

https://github.com/NuCivic/react-nvd3
https://nvd3-community.github.io/nvd3/examples/documentation.html
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandlers
https://github.com/NuCivic/dkan/tree/rtd/docs/development/data/datahandlers


DKAN Documentation, Release

flexGrow: 0.5
}

}
},
cells: {

height: 40,
width: 500,
overrides: {

1: {
height: 40

}
}

}
}

},

Available settings

• settings:

– settings.table: allows to configure all the properties for a table

– settings.columns: allows to configure all the properties for columns

* overrides: allows to override configurations for the column name number used as key.

– settings.cells: allows to configure all the properties for cells

– overrides: allows to override configurations for the cell in the row number used as key.

– settings.hideControls: Hide row-numbers select in table header..

– settings.hideFilterHeader: Hide filter box in table header.

Goal Component

React Dash allows you to define goals to accomplish and are measured against the data. Goals be displayed by
increase, decrease, maintain or measure.

{
type: 'GAGoal',
title: '',
caption: 'number of schools enrollments',
link: 'http://tootherplace.com',
icon: 'glyphicon-gbp',
startDate: '03/24/2016',
endDate: '04/24/2016',
startNumber: 0,
endNumber: 200,
action: 'increase',
background: 'white',

1.2. Developer Guide 19



DKAN Documentation, Release

// trackStatus: 'function',
tolerance: [
{from: 0, to: 2, label: 'On Track', color: 'green'},
{from: 2, to: 5, label: 'Needs Improvement', color: 'orange'},
{from: 5, to: Infinity, label: 'Off Track', color: 'red'},

],
spline: {
height: 50,

},
fetchData: {type:'function', name: 'getData'},
metric: 'getRandomMetric'

}

Available settings

• caption: caption text using in the component. Only plain text is allowed.

• link: a url to redirect users when they click in the goal.

• startDate: date when you start to messure your goal

• endDate: date when you needs to reach the goal.

• startNumber: amount of units you start with.

• endNumber: amout of units you want to reach.

• action: the action you want to accomplish.

There are 6 possible values:

• increase: your goal is to increase the number of units. If the number of units are equal or greater than the
endNumber then goal is on track.

• decrease: your goal is to decrease the number of units. If the number of units are equal or lower than the
endNumber then goal is on track.

• maintain_above: this action is very similar to the increase action except startNumber and endNumber should be
set at the same number.

• maintain_below: this action is very similar to the decrease action except startNumber and endNumber should
be set at the same number.

• measure: in this case you don’t want to reach a goal but just display a mesure.

• tolerance: allow you to define a tolerance to define the status of your goal.

Let’s take a look at the above example. In that case if your deviation is between 0 and 2 then the OnTrack label will
be displayed because the first item of tolerance will be selected.

Deviation is computed by projecting the number of units based on the startDate, endDate and endNumber and using
a linear function. You can override the getTracker and the trackStatus functions if this projection doesn’t fit with your
needs.

• spline: you can choose to additionally show a spline chart below the goal. If you choose to display the goal then
you can set an object with the configuration needed to display the spline (e.g.: height).

Loader

Loader allows components to display a loader while they are fetching data. If you create a completely new component
(it inherits either from Component or BaseComponent) then you can use it in this way:

20 Chapter 1. Table of Contents



DKAN Documentation, Release

class MyComponent extends BaseComponent {
render(){
return (

<Loader isFeching={this.state.isFeching}>

</Loader>
);

}
}

As soon as state.isFetching is true then all the components inside and will display.

If you are extending from the BaseComponent and using the fetchData property to fetch resources then the isFeching
state is handled for you.

If you aren’t using fetchData to fetch resources then you need to switch this variable manually.

Markup

Markup component allows you to embed arbitrary html markup within your react dashboard layout.

For example - a static html list:

{
type: 'Markup',
content: '<div>\

<ul>\
<li>FOO</li>\
<li>BAR</li>\
<li>BAZ</li>\

</ul>\
</div>'

}

Available settings

• content: the html content to display.

Metric Component

Metrics are intended to display a single value to the end-user.

{
type:'Metric',

1.2. Developer Guide 21



DKAN Documentation, Release

cardStyle: 'metric',
iconClass: 'fa fa-clock',
background: '#9F3E69',
data: ['Provided Value'],
caption: 'New Users',

}

Available settings

• background: the background color to be used for this metric.

• caption: a description to be displayed

• cardStyle: REQUIRED: must be ‘metric’

• iconClass: font-awesome icon class

• data: a value for the metric. It should be a scalar value contained within an array

• fetchData: fetch datat callback

• dataHandlers: an array containing dataHandler object(s)

• options: an array with options (e.g.: [{ value: ‘one’, label: ‘One’ }])

Multi Component

The Multi Component provides a starting point for developing component rendering schemes that depend on logic to
determine which components to render. The Multi component expects the following settings:

• elements a keyed array that defines a set of elements. of the format:

elements:
a: [

{//... a component},
{//... another component},
{//... etc}

],
b: [

{//... just one component} // still use an array to define a single
→˓component

]

Child components should contain a ‘key’ value which is unique, and allows React to keep track of lists of children.

• initialSelect the key value to load as the initial set of elements (for example, given the above elements array ‘a’)

In addition to these settings, the implementation of the Multi component should define the following methods:

render This will render the component. The render method can define a UX element to control this method can call
this.renderChildren() in order to render the children multiComponentListener This method is responsible
for listening for a trigger to update the multicomponent. This can be an onChange handler that is defined on an input
element in the render function, a global even which is triggered by an action, or an as-yet-unforseen method of updating
the app-state. The only rule is the the multiComponentListener method needs to be reliably triggered, somehow, and
it needs to set the state.elements array to the an array of valid dashboard components. componentWillMount By
default, this function will set the initial state.elements array to the value assigned to initialSelect in the components
settings. This, however, can be overridden to provide custom logic to determine the initial state of the multi component.
NOTE This sounds more confing than it is. Look at the /examples/GAMultiSelectComponent.js and
src/compenents/Multi.js source code to understand more clearly what is going. NOTE2 Stay tuned for
more out of the box functionality and better documentation!

22 Chapter 1. Table of Contents

http://fontawesome.io/icons/


DKAN Documentation, Release

Creating custom components

Extending components

Components can be extended to provide custom behavior:

import React, { Component } from 'react';
import Registry from '../../src/utils/Registry';
import Chart from '../../src/components/Chart';

export default class CustomChart extends Chart {
// ... do custom stuff here

}

// make sure to register the component!!
Registry.set('GAChart', CustomChart);

Javascript alllows you to override any method of a parent class, but...

** Functions commonly overridden in custom components: **

• fetchData: Provide logic for gatherin data

• onData: Preprocess the fetched data, when available

• onResize: Add a post-hook to a resize event. (this.state.componentWidth should always be available, and is
updated after resize, but before onResize is called)

1.2. Developer Guide 23



DKAN Documentation, Release

Choropleth Maps

@@TODO UPDATE - !!!this is out of date!!! The Choropleth element provides a choropleth map (also known as a
“heat map”) and a legend. The component uses a set of functions (choroplethFunctions) to map domain data to map
polygons. The following elements are required to generate the Choropleth:

Map Data

Map data provides features suitable for rendering a d3 map. Two formats are supported: topojson and geojson.

Domain Data

Domain data provides the statistical data necessary to calculate the levels of the choropleth. As with all components,
this can be provided by the globalData parameter, or fetched via a custom function or using any of the available
backends.

Configuration object

{
type: 'Choropleth',
format: 'geojson',
fetchData: {
url: './data/apollo-parsed-1737-325_0.csv',

24 Chapter 1. Table of Contents



DKAN Documentation, Release

type: 'backend',
backend: 'csv',
// delimiter: '\t'

},
id: 'Choropleth',
dataKeyField: 'Zone',
dataValueField: 'Total Observers',
geometryKeyField: 'name',
geometry: './data/zones.geojson', // topojson or geojson
projection: 'equirectangular',
scaleDenominator: .7,
borderColor: '#000000',
noDataColor: '#F3F3F3',
dataClassification: 'equidistant',
legend: {
// startColor: 'red',
// endColor: 'yellow',
classesCount: 5,
palleteKey: 'GnBu',
pallete: ['#f0f9e8', '#bae4bc', '#7bccc4', '#43a2ca', '#0868ac'],
domainStartValue: '',
domainEndValue: '',

}
// customMin: '',
// customMax: '',
// topologyObject: 'counties'

}

Settings

• format: [string] type of geometry file to be used. Actually geojson and topojson geometries are supported.

• geometry:: [string] path to either a geojson or topojson file.

• geometryKeyField (geojson): [string] name of the property in the geometry file that will be used to join the
domain data with the proper polygon.

• dataKeyField: [string] field in the domain data that will be used to join join the domain data with the proper
polygon.

• dataValueField: [string] field in the domain data to calculate the levels of the choropleth.

• projection: [string] the projection to draw the geometry. Available projections can be found at
https://github.com/d3/d3/wiki/Geo-Projections.

• scaleDenominator: [number] a number to scale the map according to an arbitrary factor - experiment to find
the best result

• borderColor: [string] border color for each shape in the geometry

• noDataColor: [string] shape color when no data is available in a given polygon.

• startColor(linear scale): [string] color mapped to the lowest value in the domain data.

• endColor(linear scale): [string] color mapped to the highest value in the domain data.

• dataClassification: [string] kind of scale to be used for data classification. Linear and Equidistant scales are
supported.

• legend

– classesCount the number of ranges to divide the domain data into

1.2. Developer Guide 25



DKAN Documentation, Release

– pallete An array of css colors to represent the choro[pleth gradient]

1.2.10 Theming

Bootstrap grid

React Dash uses bootstrap responsive grid. Full docs are here

Define rows and columns as follows in your settings.js file:

{
type: 'Region',
className: 'row',
children: [
{

type: 'Metric',
value: 'A',
className: 'col-4-md'

},
{,

type: 'Metric',
value: 'B',
className: 'col-4-md'

},
{

type: 'Metric',
value: 'B',
className: 'col-4-md'

}
]

}

cards

Cards allow you to use pre-defined themed layouts at the component level. See Cards. To enable card layout, add
cardStyle prop to your component in settings.js:

{
type: 'Chart',
cardStyle: 'chart',
header: 'Card renders headers!',
// .... your settings follow

}

custom css

The index.html file in the examples project loads static/custom.css. Add custom css here.

inline styles

Define a style object in settings.js:

26 Chapter 1. Table of Contents

https://v4-alpha.getbootstrap.com/layout/grid/
https://github.com/NuCivic/dkan/tree/rtd/docs/development/components/Card


DKAN Documentation, Release

{
type: 'yourComponentType',
style: {height: '100%', maxWidth: '60%', fontFamily: '"Times New Roman", Georgia,

→˓Serif'}
}

1.3 Implementation Examples

• Hours Worked Performance Dashboard

• Current Library Example

• UCR Arrest Data Dashboard

1.4 Ecosystem

React-dash is an npm library that serves as a toolkit for doing rapid prototyping and development.

In order to further speed development, we also provide a boilerplate module with which to build standalone projects.

For Drupal and DKAN development, we provide a Drupal Module which allows you to easily embed a compiled
dashboard into a drupal page, provides menu callbacks, and other useful features.

1.3. Implementation Examples 27

http://dev-react-dashboard-demo.getnucivic.com/dashboard/19
http://nucivic.github.io/react-dashboard/
http://dev-ucr-dashboard.getnucivic.com/dashboard/12
https://github.com/NuCivic/react-dashboard-boilerplate
https://github.com/NuCivic/react_dashboard


DKAN Documentation, Release

1.5 Contribute to React Dash

Visit our Github Page to:

• Report a bug

28 Chapter 1. Table of Contents

https://github.com/NuCivic/react-dashboard


DKAN Documentation, Release

• Submit a patch or pull request

• Suggest an improvement

• Show us what you have built!

1.5. Contribute to React Dash 29


	Table of Contents

